銷售咨詢熱線:
18911365393
產品中心
首頁 > 產品中心 > > 太陽能電池測試設備 > QFLS準費米能級分裂測試儀

QFLS準費米能級分裂測試儀

描述:QFLS準費米能級分裂測試儀由德國柏林亥姆霍茲中心(HZB) spin-off出來的QYB Quantum Yield Berlin GmbH公司的科學家們研發。該團隊于2020年創造了鈣鈦礦/硅疊層太陽能電池效率的世紀記錄29.15%,相應文章發表在Science上(DOI: 10.1126/science.abd4016)。

更新時間:2025-08-04
產品型號:LuQY Pro+
廠商性質:代理商
詳情介紹
品牌其他品牌應用領域能源,電子/電池,鋼鐵/金屬,汽車及零部件

QFLS準費米能級分裂測試儀

(Quasi-Fermi Level Splitting Tester)



QFLS準費米能級分裂測試儀由德國柏林亥姆霍茲中心(HZB) spin-off出來的QYB Quantum Yield Berlin GmbH公司的科學家們研發。該團隊于2020年創造了鈣鈦礦/硅疊層太陽能電池效率的世紀記錄29.15%,相應文章發表在Science上(DOI: 10.1126/science.abd4016)。


QFLS準費米能級分裂測試儀用于測試太陽能電池、LEDs等光電器件的絕對電致發光光譜和光致發光光譜,并計算iVoc 暗指開路電壓、EL/PLQY量子產率,QFLS準費米能級分裂等。該設備設計緊湊,操作便捷,可放置手套箱內。


QFLS準費米能級分裂測試儀


l 
技術特點:


ELQY/PLQY靈敏度≥1E-6

        *ELQY電致發光量子產率,

        *PLQY光致發光量子產率

絕對光通量測量

絕對EL/PL譜檢測

直接EL/PLQY量子產率計算

直接QFLS準費米能級分裂計算

理想因子計算

Pseudo-JV構建

激光光強掃描測量

電學偏壓掃描測量

自動連續激光光強可調0.001~10“suns"

偏執電流/電壓功能

整合了SMU


QFLS準費米能級分裂測試儀



l 件操作界面:


QFLS準費米能級分裂測試儀


軟件顯示在各種變化激發條件下,測量樣品發光光譜.

*上部分窗口:顯示發射光譜,相機視野,計算LuQY(ELQY/PLQY)和 QFLS的值。

*下部分窗口:樣品信息(“1" -增加QFLS計算可信度和調節激發及測試設定 (“2" – “4").


軟件采用了兩種QFLS準費米能級分裂計算方法,并會自動選擇為各自測量選擇*高可信度的方法。這可以取決于發射類型(例如,寬子帶隙發射)以及用戶是否提供光吸收數據。


l 直接QFLS準費米能級分裂預測:

-不要求樣品的指定數據,可信度低

-可靠QFLS準費米能級分裂預測針對低子帶隙發射和低斯托克斯位移發射


l 精細QFLS準費米能級分裂預測:

-提供樣品指定吸收數據,增加QFLS準費米能級分裂可信度

-光學帶隙,短路電流密度Jsc@STC和EQE外量子效率@532nm能手動輸入或者從EQE/吸收光譜提取

-提供樣品數據可以更加**的實現設定點激發設置(例如:1sun等效激光激發)和提高QFLS準費米能級分裂預測精度。


QFLS準費米能級分裂測試儀


l 系統分辨能力


QFLS準費米能級分裂測試儀


a)極限激光強度分別光斑尺寸0.1和1cm2下,樣品的光學帶隙(假定:樣品理想吸收,光子能量以下為0,光學帶隙能量以上為1)


b) LuQY(EL/PLQY)光學帶隙能量*小可分辨(假定:a)中樣品理想吸收,發射斯托克斯位移為0,虛線為LuQY*小分辨率@不同激發強度,光斑尺寸0.1和1cm2。


l 技術規格

光子激發波長:532 nm

極限激光功率:140 mW

可調光子激發強度(等效電流):4 μA - 40 mA

光子激發光斑(可選):0.1 cm2 / 1 cm2


光譜測量范圍:550 - 1050 nm

下限可分辨發光量子產率:1E-6

積分時間:1 ms – 35 min

光譜取樣間隔:1 nm

信噪比:600:1


電流電壓源和測量單元:±10 V, ±150 mA

電壓源精度:10 mV

電壓感應精度:50 μV

電流感應精度:100 nA, 1 μA, 10 μA


樣品夾具:可定制(極限樣品尺寸30mmX30mmX10mm)

                              極限測試子樣品數量:6 subcells


設備尺寸:220 mm x 390 mm x 120 mm

重量:6.1 kg


注:LuQY Pro激光器強度校準為絕對光子數依據certified reference solar cells from Fraunhofer ISE CalLab PV Cells。LuQY Pro光譜靈敏度校準為絕對光子數依據可追溯NIST已知光通量的燈。



QFLS準費米能級分裂測試儀QFLS準費米能級分裂測試儀


參考文獻:


Publications Using LuQY Pro/LuQY Measurement System

[]

L. Jia et. al., ?Efficient perovskite/silicon tandem with asymmetric self-assembly molecule“, Nature, July 2025, doi: 10.1038/s41586-025-09333-z.

[]

Z. Jia et al., “Efficient near-infrared harvesting in perovskite–organic tandem solar cells," Nature, vol. 643, no. 8070, pp. 104–110, Jul. 2025, doi: 10.1038/s41586-025-09181-x.

[]

H. Chen et al., “Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands," Science, vol. 384, no. 6692, pp. 189–193, Apr. 2024, doi: 10.1126/science.adm9474.

[]

J. Li et al., “Enhancing the efficiency and longevity of inverted perovskite solar cells with antimony-doped tin oxides," Nature Energy, vol. 9, no. 3, pp. 308–315, Mar. 2024, doi: 10.1038/s41560-023-01442-1.

[]

Z. Wei et al., “Surpassing 90% Shockley–Queisser VOC limit in 1.79 eV wide-bandgap perovskite solar cells using bromine-substituted self-assembled monolayers," Energy Environ. Sci., vol. 18, no. 4, pp. 1847–1855, 2025, doi: 10.1039/d4ee04029e.

[]

X. Tang et al., ?Enhancing the efficiency and stability of perovskite solar cells via a polymer heterointerface bridge“, Nat. Photon., June 2025, doi: 10.1038/s41566-025-01676-3.

[]

Y. Yuan, G. Yan, S. Akel, U. Rau, and T. Kirchartz, “Deriving mobility-lifetime products in halide perovskite films from spectrally- and time-resolved photoluminescence," Apr. 16, 2025, Science Advances. doi: 10.1126/sciadv.adt1171.

[]

E. Alvianto et al., ?Industry‐Compatible Fully Laminated Perovskite‐CIGS Tandem Solar Cells with Co‐Evaporated Perovskite“, Advanced Materials, July 2025, doi: 10.1002/adma.202505571.

[]

O. Er-raji et al., “Tailoring perovskite crystallization and interfacial passivation in efficient, fully textured perovskite silicon tandem solar cells," Joule, vol. 0, no. 0, Jul. 2024, doi: 10.1016/j.joule.2024.06.018.

[]

H. Liang et al., “29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells," Joule, vol. 7, no. 12, pp. 2859–2872, Dec. 2023, doi: 10.1016/j.joule.2023.10.007.


留言框

  • 產品:

  • 您的單位:

  • 您的姓名:

  • 聯系電話:

  • 常用郵箱:

  • 省份:

  • 詳細地址:

  • 補充說明:

  • 驗證碼:

    請輸入計算結果(填寫阿拉伯數字),如:三加四=7
主站蜘蛛池模板: 免费无码成人AV片在线在线播放| 成人免费无码大片a毛片| 亚洲欧美日韩成人高清在线一区| 国产成人亚洲精品电影| 依依成人精品视频在线观看| 久久久久成人片免费观看蜜芽| 欧美成人免费一级人片| 国产精品成人久久久| 亚洲国产aⅴ成人精品无吗| 欧美成人免费网站| 国产成人AV三级在线观看按摩| 精品无码成人片一区二区| 国产成人高清亚洲一区app| 亚洲精品午夜国产va久久成人| 中文字幕欧美成人免费| 国产成人无码精品久久久免费| 久久成人国产精品一区二区| 成人免费视频一区二区| 中文字幕成人乱码在线电影| 国产成人精品免费久久久久| 精品久久久久久成人AV| 国产成人久久777777| 成人国产网站v片免费观看| 91成人免费在线视频| 国产成人yy精品1024在线| 日韩国产成人精品视频人| 亚洲国产成人久久一区二区三区| 成人h动漫精品一区二区无码| 99精品国产成人a∨免费看| 国产成人vr精品a视频| 国产成人手机高清在线观看网站 | 国产成人yy免费视频| 成人免费在线观看| 成人网站在线进入爽爽爽| 成人羞羞视频国产| 成人午夜短视频| 成人午夜性A级毛片免费| 成人免费视频软件网站| 国产成人无码免费看片软件| 成人综合激情另类小说| 成人无遮挡裸免费视频在线观看|